
Robotic Learning Notes

Patrick Yin

Updated August 31, 2021

1



Contents

1 Visual Reinforcement Learning with Imagined Goals 3

2 Contextual Imagined Goals for Self-Supervised Robotic Learn-
ing 7

3 AWAC: Accelerating Online Reinforcement Learning with Of-
fline Datasets 9

4 What Can I Do Here? Learning New Skills by Imagining Visual
Affordances 12

5 Bridge Data: Boosting Generalization of Robotic Skills with
Cross-Domain Datasets 14

6 C-Learning: Learning to Achieve Goals via Recursive Classifi-
cation 15

7 Persistent Reinforcement Learning via Subgoal Curricula 19

2



1 Visual Reinforcement Learning with Imagined
Goals

Paper here.

1.1 Summary

This paper introduces self-supervised goal-conditioned reinforcement learning
with their method, reinforcement learning with imagined goals (RIG).

RIG involves a VAE with encoder qϕ(s) and decoder pψ(z), goal-conditioned
policy πθ(z, zg), and goal-conditioned Q-function Qw(z, a, zg). Here, s is a state
observation (i.e. image), z is its latent encoding of s, zg is the latent encoding
of the sampled goal, and a is the action taken.

1.1.1 Variational Autoencoder Training

We first train the β-VAE by executing a random policy, collecting state obser-
vations, and optimizing

L(ψ, ϕ; s(i)) = −βDKL(qϕ(z|s(i))∥p(z)) + Eqϕ(z|s(i))[log pψ(s
(i)|z)]

where p(z) is a prior which we take to be unit Gaussian. Our encoding is the
mean of the encoder: z = µϕ(s).

1.1.2 Goal-conditioned RL Training

Next, we train our Q-function and policy in this latent space. We use twin
delayed deep deterministic policy gradients (TD3) to train our policy and q-
function following the Bellman error

E(w) = 1

2
∥Qw(s, a, g)− (r(s′, g) + γmax

a′
Qw̄(s

′, a′, g))∥2

where the reward is determined with negative Mahalanobis distance in the latent
space between the latent encoding the state and the goal: r(z, zg) = −∥z−zg∥A.
We can set matrix A to be the precision matrix of qϕ, but in practice A = I

3

https://arxiv.org/pdf/1807.04742.pdf


works better. We also fine-tune the VAE here to randomly generated state
observations and state observations collected during explorations so it can be
exposed to new states it wasn’t trained on previously.

1.1.3 Latent Goal Relabeling

We can enable sample-efficient learning by using the VAE to relabel goals. Given
the (s, a, s′) in our dataset, we encode the state observations, sample zg from
our VAE prior p(z), and compute r(z, zg) = −∥z−zg∥A to produce (s, a, s′, g, r),
giving us more data to train on without sampling new datapoints. Half ot the
goals are generated this way. The other half has its goals generated using states
seen along the trajectory as in hindsight experience replay (HER).

1.1.4 Automated Goal-Generation for Exploration

We sample from the VAE prior to obtain plausible goals and give this to our
policy π(z, zg) to collect data. This is essentially a self-supervised ”practice”
phase during training.

1.1.5 Algorithm Summary

Given VAE encoder qϕ, VAE decoder pψ, policy πθ, goal-conditioned value
function Qw, we have RIG:

4



Algorithm 1 RIG: Reinforcement learning with imagined goals

1: Collect D = {s(i)} using any exploration policy
2: Train β-VAE on D
3: Fit prior p(z) to latent encodings {µϕ(s(i))}
4: for n = 0, ..., N − 1 episodes do
5: Sample latent goal from prior zg ∼ p(z).
6: Sample initial state s0 ∼ E
7: for t = 0, ...,H − 1 steps do
8: Get action at = πθ(e(st), zg) + noise
9: Get next state st+1 ∼ p(·|st, at)

10: Store (st, at, st+1, zg) into replay buffer R
11: Sample transition (s, a, s′, zg) ∼ R
12: Encode z = e(s), z′ = e(s′)
13: With probability 0.5, replace zg with z′g ∼ p(z)
14: Compute reward r = −∥z′ − zg∥
15: Train Q-function and policy on (z, a, z′, zg, r) with an RL algorithm

(TD3 used in paper)
16: end for
17: for t = 0, ...,H − 1 steps do
18: for i = 0, ..., k − 1 steps do
19: Sample future state shi

, t < hi ≤ H − 1
20: Store (st, at, st+1, e(shi

)) into R
21: end for
22: end for
23: Fine-tune β-VAE every K episodes on mixture of D and R
24: end for

1.2 Q&A

1.2.1 Basic

• When calculating reward, how does Mahalanobis distance work if both
the state and goal latent encoding are points, not distributions?

– VAE outputs a distribution.

• When calculating reward, what is the precision matrix of a VAE encoder?
How was r(s, g) = −∥z − zg∥A ∝

√
log eϕ(zg|s) derived?

– Precision matrix is 1 over the covariance matrix. Not used anymore.
Just set to identity.

• During VAE fine-tuning, what does it mean when it says state observations
are randomly generated?

– Manually random set initial state and add to replay buffer, then pull
from replay buffer.

5



• During latent goal relabeling, what is a fitted prior? How does this help
the distribution of latents match the prior (i.e. gaussian)? Why does it
have to match?

– Point is that extra dimensions that don’t have meaning aren’t used
and set to zero during generation. No learning here, just a one-step
gaussian fit.

1.2.2 Trivial

• When getting action from policy, why do we add noise?

– For exploration.

6



2 Contextual Imagined Goals for Self-Supervised
Robotic Learning

Paper here.

2.1 Summary

This paper introduces context-conditioned goal sampling. In other words, the
VAE used in RIG is conditioned on the initial state, which prevents the gener-
ation of impossible goals and thus improves learning (i.e. a robot cannot push
a red puck to a desired location if the red puck doesn’t exist).

2.1.1 Context-Conditioned VAE (CC-VAE) Training

We use a modified CVAE which takes in the initial state s0 as input, which
we call the “context” of the rollout. This modified CVAE is called a context-
conditioned VAE (CC-VAE). The CC-VAE takes in zc as input c, which is s0
encoded with convolutional encoder e0. The loss function for training is

LCC-VAE = LCVAE + log p(s0|zc)

LCVAE = −Eqϕ(z|s,c)[log p(s|z, c)] + βDKL(qϕ(z|s, c)∥p(z))

Essentially, this is the CVAE loss with an additional term for reconstructing the
initial state. Due to the information bottleneck on zt, the optimal solution would
encode as much information as possible in zc, while only encoding information
about state changes from initial state within zt.

7

https://arxiv.org/pdf/1910.11670.pdf


2.1.2 Context-Conditioned Reinforcement Learning with Imagined
Goals (CC-RIG) Training

In CC-RIG, we essential just do RIG again but now with the CC-VAE instead
of a VAE. We compute encoding of s0, zc = e0(s0). Let z̄ denote concatenated
(z, zc) and µ(s, s0) denote the mean of qϕ(z|st, s0). Given our encoders µ(st, s0),
e0(s0), policy πθ(z̄, z̄g), goal-conditioned value function Qw(z̄, z̄g), and dataset
of trajectories D = {τ (i)}. In practice, we sample zg ∼ N(0, I) as in RIG.

Algorithm 2 Context-Conditioned RIG

1: Train CC-VAE on D
2: for n = 0, ..., N − 1 episodes do
3: Sample latent goal from prior zg ∼ p(z), z̄g = (zg, zc)
4: Sample initial state s0 ∼ p(s0)
5: Encode zc = e0(s0)
6: for t = 0, ...,H − 1 steps do
7: Observe st and encode z̄t = (µ(st, s0), zc)
8: Get action at = πθ(z̄t, z̄g) + noise
9: Get next state st+1 ∼ p(·|st, at)

10: Store (z̄t, at, z̄t+1, z̄g) into replay buffer R
11: Sample transition (z̄, a, z̄′, z̄g) ∼ R
12: Compute reward r = −∥z̄′ − z̄g∥
13: Train Q-function and policy on (z̄, a, z̄′, z̄g, r) with an RL algorithm

(TD3 used in paper)
14: end for
15: end for

During testing, given goal image sg, we encode it as zg = µ(sg, s0) and execute
policy with latent goal z̄g.

2.2 Q&A

2.2.1 Basic

• Are latent relabeling, fitted priors, adding future-state data, VAE fine-
tuning still done?

– Latent relabeling/future-state data is done. Fitted priors and fine-
tuning no.

8



3 AWAC: Accelerating Online Reinforcement Learn-
ing with Offline Datasets

Paper here.

3.1 Summary

Advantage weighted actor critic (AWAC) is an actor critic algorithm that lever-
ages a combination of prior demonstration data (which could be sub-optimal)
and online experience. The challenge to learning from offline data and subse-
quent online fine-tuning is

• Data Efficiency: Pre-training with imitation learning and fine-tuning
with on-policy RL algorithms has two drawbacks: the prior data may not
be optimal so imitation learning may be ineffective, and on-policy fine-
tuning is data inefficient because it doesn’t reuse prior data in the RL
stage.

• Bootstrapping Error: Off-policy actor-critic methods struggle with off-
policy bootstrapping error accumulation. Q-estimates are not fully accu-
rate for bootstrapping, especially when the actions are not in data distri-
bution. The policy exploits overestimated Q-values, making estatimed Q
values worse.

• Non-stationary Behavior Models: Prior offline RL algorithms address
the bootstrapping problem by constraining the policy π close to behavior
policy πβ (actions present in the replay buffer). Many offline RL algo-
rithms explicitly fit a parametric model to samples from the replay buffer
for the distribution πβ . However, fitting an accurate behavorial model as
data is collected online during fine-tuning is a challenging research prob-
lem. We require an off-policy RL algorithm that constrains the policy to
prevent offline stability and error accumulation, but is not so conservative
that it prevents online fine-tuning due to imperfect behavior modeling.

AWAC avoids these issues. For data efficiency, the algorithm trains a critic with
DP. To avoid bootstrapping error while avoiding modeling the data distribution,
we optimize

argmax
π

Ea∼π(·|s)[Aπk(s, a)] s.t. DKL(π(·|s)∥πβ(·|s)) ≤ ϵ,
∫
a

π(a|s)da = 1

The Lagrangian is

L(π, λ, α) = Ea∼π(·|s)[Aπk(s, a)]+λ(ϵ−DKL(π(·|s)∥πβ(·|s)))+α(1−
∫
a

π(a|s)da)

Differentiating with respect to π gives

∂L
∂π

= Aπk(s, a)− λ log πβ(a|s) + λ log π(a|s)λ − α

9

https://arxiv.org/pdf/2006.09359.pdf


Setting ∂L
∂π to zero and solving for π gives the closed form solution

π∗(a|s) = 1

Z(s)
πβ(a|s) exp

( 1

λ
Aπk(s, a)

)
We now want to project our optimal solution into our parameter space, which
we will do by minimizing the KL-divergence of πθ from π∗ under pπβ

(s):

argmin
θ

Epπβ
(s)[DKL(π

∗(·|s)∥πθ(·|s))] = Epπβ
(s)

[
Eπ∗(·|s)[− log πθ(·|s)]

]
We choose the reverse KL direction because it allows us to optimize θ as MLE
problem rather than sampling actions from a policy that may be out of distribu-
tion for the Q function. We can know compute the policy update by sampling
directoy from β:

θk+1 = argmax
θ

Es,a∼β
[
log πθ(a|s) exp

( 1

λ
Aπk(s, a)

)]
This actor update resembles weighted behavior cloning, where targets are ob-
tained by reweighting the state-action pairs observed in the current dataset
with predicted advantages from the learned critic. With this, we now have our
AWAC algorithm

Algorithm 3 AWAC

1: Dataset D = {(s, a, s′, r)j}
2: Initialize buffer β = D
3: Initialize πθ, Qϕ
4: for iteration i = 1, 2, ... do
5: Sample batch (s, a, s′, r) ∼ β
6: y = r(s, a) + γEs′,a′ [Qϕ(s′, a′)]
7: ϕ← argminϕ ED[(Qϕ(s, a)− y)2]
8: θ ← argmaxθ Es,a∼β [log πθ(a|s) exp( 1λA

πk(s, a))]
9: if i > num offline steps then

10: τ1, ..., τK ∼ pθ(τ)
11: β ← β ∪ {τ1, ..., τK}
12: end if
13: end for

3.2 Q&A

3.2.1 Basic

• For deriving AWAC, when setting ∂L
∂π to zero, I got

π∗(a|s) = 1

Z(s)
πβ(a|s) exp

(
− 1

λ
Aπk(s, a)

)
. What am I missing?

10



– Probably something wrong with Lagrangian. Flipped sign or some-
thing. I’ll check this later.

11



4 What Can I Do Here? Learning New Skills
by Imagining Visual Affordances

Paper here.

4.1 Summary

This paper introduces visual affordance learning (VAL), which is essentially
AWAC + a scaled up CC-RIG to allow for offline training + online fine-tuning,
more expressive generative models, and learning a diverse set of skills. VAL con-
sists of three learning phases: an affordance learning phase to learn affordances
from the prior data, an offline behavior learning phase to learn behaviors from
prior data, and an online behavior learning phase where an agent actively inter-
acts with the test environment using affordances and learns potential behaviors
in the new environment.

4.1.1 Affordance Learning

We use a lower-dimensional latent space to encode the image observations in
order to make goal generation easier. Given such a latent space, we can then
learn affordances by training a conditional model p(zt|z0) to generate plausible
outcomes of an initial state. For the latent variable generative model p(st|zt),
we use a deterministic VQVAE zt = ϕ(st). For the conditional model, we use a
conditional PixelCNN in the latent space.

4.1.2 Offline Behavior Learning

We use AWAC to optimize π(a|z, zg) with reward function r(z, zg) = −1∥z−zg∥>ϵ.
We also relabel zg with future hindsight experience with 40% probability and
sample from p(zt|z0) with 40% probability.

4.1.3 Online Behavioral Learning

During the online fine-tuning phase, we sample from the affordance module zg ∼
pθ(·|z0) and roll out our policy π(a|z, zg). We then iterate between improving
the policy with offline RL and collecting exploration data, and appending it to
the replay buffer.

12

https://arxiv.org/pdf/2106.00671.pdf


4.1.4 Algorithm Summary

Given dataset D, policy π(a|z, zg), Q-function Q(z, a, zg), RL algorithm A, re-
play buffer R, relabeling strategy pRS(z), and environment family p(E)

Algorithm 4 Visual Affordance Learning

1: Learn encoder ϕ(z|s) by generative model of D
2: Learn affordances p(zt|z0) by generative model of D
3: Add latent encoding of D to the replay buffer
4: Initialize π and Q by running A offline
5: Sample Enew ∼ p(E), Enew = (pnew(s0), pnew(st+1|s, a))
6: for 1, ..., Nepisodes do
7: Sample initial state s0 ∼ pnew(s0)
8: Sample goal zg ∼ p(zt|z0)
9: for t = 0,...,H do

10: Sample at ∼ π(·|zt, zg)
11: Sample st+1 ∼ pnew(·|st, at)
12: end for
13: Store trajectory (z1, a1, ..., zH) in replay buffer R
14: for 1, ..., Ntrain steps do
15: Sample transition (zt, at, zt+1, zg)
16: Relabel with z′g ∼ pRS(zg) and recompute reward
17: Update π and Q with relabeled transition using A
18: end for
19: end for

13



5 Bridge Data: Boosting Generalization of Robotic
Skills with Cross-Domain Datasets

Paper here.

5.1 Summary

This is a dataset paper which includes a diverse ’bridge’ dataset of 4,700 human
demonstrations of a robot performing 33 common kitchen tasks across 3 toy
kitchens and 3 toy sinks with varying lighting, robot positions, and backgrounds.
The role of the bridge dataset is to boost generalization for policies:

1. Transfer with matching behaviors: user collects some data in their
target domain for tasks that are also present in the bridge data, and uses
the bridge data to boost performance and generalization of these tasks

2. Zero-shot transfer with target support: user utilizes some data of
one task in their target domain to import other tasks that are present
in the bridge data without additionally collecting new demonstration of
them in the target domain

3. Boosting generalization of new tasks: user provides some data for
a new task that is not present in the bridge data, and then utilizes the
bridge to boost generalization and performance

14

https://arxiv.org/pdf/2109.13396.pdf


6 C-Learning: Learning to Achieve Goals via
Recursive Classification

Paper here.

6.1 Summary

C-learning is a goal-conditioned RL algorithm that learns a conditional probabil-
ity density function over future states by training a classifier to predict whether
an observation comes from the future.

6.1.1 Monte Carlo C-Learning

We want to model the future γ-discounted state density function:

pπ+(st+|st, at) ≜ (1− γ)
∞∑

△=1

γ△pπ△(st+△ = st+|st, at)

We will first derive an on-policy Monte Carlo C-learning algorithm. Given a
distribution over state action pairs, p(st, at), we define the marginal future state
distribution p(st+) =

∫
pπ+(st+|st, at)p(st, at)dstdat. The classifier will take in

(st, at, st+) can predict whether st+ was sampled from pπ+(st+|st, at) (F = 1) or
p(st+) (F = 0). The Bayes optimal classifier is

p(F = 1|st, at, st+) =
pπ+(st+|st, at)

pπ+(st+|st, at) + p(st+)

Thus, our future state density function estimate is

fπθ (st+|st, at) =
Cπθ (F = 1|st, at, st+)
Cπθ (F = 0|st, at, st+)

p(st+)

Our policy will choose action at that maximizes this density, and this solution
doesn’t depend on marginal p(st+). After sampling state-action pair (st, at) ∼
p(st, at), we sample s

(1)
t+ ∼ pπ+(st+|st, at) with label F = 1 and s

(0)
t+ ∼ pπ+(st+)

with label F = 0. We then train a classifier to maximize log likelihood

F(θ) ≜ E st,at∼p(st,at)
s
(1)
t+∼pπ+(st+|st,at)

[logCπθ (F = 1|st, at, s(1)t+ )]+Est,at∼p(st,at)
s
(0)
t+∼p+(st+)

[logCπθ (F = 0|st, at, s(0)t+ )]

To sample pπ+(st+|st, at), we use ancestral sampling with △ ∼ GEOM(1 − γ).
This is on-policy because pπ+(st+|st, at) depends on π and st+.

15

https://arxiv.org/pdf/2011.08909.pdf


With this we have our Monte Carlo C-learning algorithm: given input trajecto-
ries {τi}, p(s, a) ∼ Unif({s, a}(s,a)∼τ ), and p(s+) ∼ Unif({st}st∼τ,t>1),

Algorithm 5 Monte Carlo C-Learning

1: while not converged do

2: Sample st, at ∼ p(s, a), s(0)t+ ∼ p(st+),△ ∼ GEOM(1− γ)
3: Set goal s

(1)
t+ ← st+△

4: F(θ)← logCπθ (F = 1|st, at, s(1)t+ ) + logCπθ (F = 0|st, at, s(0)t+ )
5: θ ← θ − η∇θF(θ)
6: end while
7: return classifier Cθ

6.1.2 Off-Policy C-Learning

On-policy learning precludes the ability to readily share experience across tasks
because we cannot use experience collected when commanding one goal to learn
a classifier for another goal. Note that

pπ+(st+ = st+|st, at) = (1−γ)p(st+1 = st+|st, at)+γEp(st+1|st,at)
π(at+1|st+1)

[
pπ+(st+ = st+|st+1, at+1)

]
We can now rewrite our classification objective as

F(θ, π) = E p(st,at),p(st+1|st,at)
π(at+1|st+1),p

π
+(st+|st+1,at+1)

[(1− γ) logCπθ (F = 1|st, at, st+1) + γ logCπθ (F = 1|st, at, st+)]

+ Ep(st,at),p(st+)[logC
π
θ (F = 0|st, at, st+)]

We can estimate expectations that use pπ+(st+|st+1, at+1) by sampling from
st+ ∼ p(st+) and then weighting samples by importance weight

w(st+1, at+1, st+) ≜
pπ+(st+|st+1, at+1)

p(st+)
=
Cπθ (F = 1|st+1, at+1, st+)

Cπθ (F = 0|st+1, at+1, st+)

The new objective is then

F(θ, π) = Ep(st,at),p(st+1|st,at)
p(st+),π(at+1|st+1)

[(1− γ) logCπθ (F = 1|st, at, st+1)

+ γ⌊w(st+1, at+1, st+)⌋sg logC
π
θ (F = 1|st, at, st+)

+ logCπθ (F = 0|st, at, st+)]

where ⌊·⌋sg indicates the gradients of the importance-weighted objective should
not depend on the gradients of the importance weights.

16



We now have our off-policy C-learning algorithm: given transitions {st, a, st+1}
and policy πϕ

Algorithm 6 Off-Policy C-Learning

1: while not converged do
2: Sample (st, at, st+1) ∼ p(s, a, st+1), st+ ∼ p(st+), at+1 ∼ πϕ(at+1|st, at)
3: w ← stop grad

(
Cπ

θ (F=1|st+1,at+1,st+
Cπ

θ (F=0|st+1,at+1,st+

)
4: F(θ, π) ← (1 − γ) logCπθ (F = 1|st, at, st+1) + logCπθ (F = 0|st, at, st+) +

γw logCπθ (F = 1|st, at, st+)
5: θ ← θ − η∇θF(θ, π)
6: end while
7: return classifier Cπθ

6.2 Goal-Conditioned C-Learning

With commanded goal st+ = g ∈ S, we have objective

F(θ, π) = E p(st,at),p(st+1|st,at)
p(st+),π(at+1|st+1,g=st+)

[(1− γ) logCπθ (F = 1|st, at, st+1)

+ γ⌊w(st+1, at+1, st+)⌋sg logC
π
θ (F = 1|st, at, st+)

+ logCπθ (F = 0|st, at, st+)]

The difference between this objective and the off-policy one is that the next
action is sampled from a goal-conditioned policy. The density function obtained
represents the future state density of st+ given commanded goal g = st+. We
now need to optimize our policy w.r.t the learned density function by maximizing
the policy’s probability of reaching the commanded goal:

G(ϕ) = max
ϕ

Eπϕ(at|st,g)[logC
π
θ (F = 1|st, at, st+ = g)]

17



With this we have the goal-conditioned C-learning algorithm: given transitions
{st, a, st+1},

Algorithm 7 Goal-Conditioned C-Learning

1: while not converged do
2: Sample (st, at, st+1) ∼ p(s, a, st+1), st+ ∼ p(st+), at+1 ∼

πϕ(at+1|st, at, st+)
3: w ← stop grad

(
Cπ

θ (F=1|st+1,at+1,st+
Cπ

θ (F=0|st+1,at+1,st+

)
4: F(θ, π) ← (1 − γ) logCπθ (F = 1|st, at, st+1) + logCπθ (F = 0|st, at, st+) +

γw logCπθ (F = 1|st, at, st+)
5: θ ← θ − η∇θF(θ, π)
6: G(ϕ)← Eπϕ(at|st,g=st+)[logC

π
θ (F = 1|st, at, st+)]

7: ϕ← ϕ+ η∇ϕG(ϕ)
8: end while
9: return policy πϕ

6.3 Q&A

6.3.1 Basic

• How does on-policy Monte Carlo C-learning depend on the commanded
goal, and as a result cannot share experience across tasks?

• How were the objectives for C-learning and Q-learning derived? How does
this motivate hypothesis 1 and 2?

• How were remark 1, 2, and 3 proved/derived?

6.3.2 Trivial

• Why isn’t there a policy gradient descent step in Monte Carlo and Off-
Policy C-Learning?

18



7 Persistent Reinforcement Learning via Sub-
goal Curricula

Paper here.

7.1 Summary

Value-accelerated Persistent Reinforcement Learning (VaPRL) generates a cur-
riculum of initial states such that the agent can bootstrap on the success of
easier tasks to efficiently learn harder tasks.

7.1.1 Persistent RL

Persistent RL distinguishes between training and evaluation objectives, where
the evaluation objective measures the performance of the desired behavior while
the training objective enables us to acquire those behaviors. Naively optimizing
r in ”long” episode horizons deteriorates performance, we we use a surrogate
reward function

r̃t(st, at) =

{
r(st, at) t = [1, HE ], [2HE + 1, 3HE ], ...

rp(st, at) [HE + 1, 2HE ], ...

Here our reward alternates between task-reward r for HE steps and rp which
encourages initial state distribution recovery for HE steps. This is only suitable
for reverse environments, where agent can continue to make progress on the task
and not get stuck. The training objective is then

JT (π) = Es0∼p̃,at∼π(·|st,G(st,pg)),st+1∼p(·|st,at)[

HT∑
t=1

γtr(st, G(st, pg))]

where the goal generator G is used to generate a curriculum of goals.

7.1.2 VaPRL

We want an increasingly-difficult curriculum so that the policy is eventually able
to reach goal g from initial state distribution p. We propose using subgoal C(g)
such that

C(g) = argmin
s
Xp(s) s.t. V π(s, g) ≥ ϵ

where Xp(s) is a user-specified distance function between state s and initial state
distribution p. The value represents the ability of the policy to reach from g
from s. The goal generator G(st, pg) is then

G(st, pg) = g s.t.

{
gtask ∼ pg, g ← C(gtask) if switch(st, g) = subgoal

rp(st, at) elif switch(st, g) = taskgoal

19

https://arxiv.org/pdf/2107.12931.pdf


We use Xp(s) = −Es0∼pV π(s, s0). Since calculating the min for C(g) is in-
tractable, we minimize C(g) over a randomly sampled subset of the data collect
by policy π by enumeration. We also relabel every trajectory collected in the
training environment with N goals sampled randomly from the set of goals that
may be part of the curriculum. With this, we have the VaPRL algorithm: given
initial state(s) Dp, N (number of goals for relabeling), and demos D,

Algorithm 8 Value-accelerated Persistent Reinforcement Learning (VaPRL)

1: Initialize replay buffer B, π(a|s, g), Qπ(s, a, g)
2: B ← B ∪ D
3: relabel demos(B)
4: while not done do
5: s ∼ p̃
6: for HT steps do
7: g ← G(s, pg)
8: a ∼ π(·|s, g), s′ ∼ p(·|s, a)
9: B ← B ∪ {(s, a, s′, g, r(s′, g)}

10: for i← 1, i ≤ N do
11: g̃ ∼ D ∪ pg
12: B ← B ∪ {(s, a, s′, g̃, r(s′, g̃))}
13: end for
14: update π,Qπ

15: s← s′

16: end for
17: end while

7.2 Q&A

7.2.1 Basic

• Does VaPRL use surrogate reward?

• What are issues with VaPRL is solving reset-free problem?

20


	Visual Reinforcement Learning with Imagined Goals
	Contextual Imagined Goals for Self-Supervised Robotic Learning
	AWAC: Accelerating Online Reinforcement Learning with Offline Datasets
	What Can I Do Here? Learning New Skills by Imagining Visual Affordances
	Bridge Data: Boosting Generalization of Robotic Skills with Cross-Domain Datasets
	C-Learning: Learning to Achieve Goals via Recursive Classification
	Persistent Reinforcement Learning via Subgoal Curricula

